大家好,今天带来一篇关于心脏介入器械受试实验的相关文献,主要内容是关于新型经导管心脏瓣膜(THV)的长期耐久性和生物学反应在临床前环境中的评估。文献名为《6-Month evaluation of a transcatheter aortic valve(myval) in a novel ovine,supra-aortic banding modle》。本研究的目的是在绵羊主动脉束带模型中对球囊可扩张经导管心脏瓣膜(THV)系统(Myval)进行6个月随访评估。通过颈动脉途径植入了11个THV系统。有2例与手术相关的死亡和2例过早死亡。在6个月时,所有完成随访的瓣膜(n = 7)均功能正常,无明显反流、钙化、血栓或赘生物。所有动物均按照研究方案中概述的标准护理,并符合动物福利法和“实验动物护理原则”。本研究在波兰科斯特科维采美国心脏中心心血管研究与发展中心的经良好实验室规范认证的实验室内进行。背景介绍
经导管心脏瓣膜(THV)和经导管主动脉瓣植入术(TAVI)的引入是钙化性主动脉瓣狭窄治疗中的一个重要里程碑。1,2目前,TAVI不仅是无法手术和手术风险高的患者的首选方法,而且最近,适应症已扩大到中低风险亚组的患者。2,3这一新现实给新的THV技术带来了更多挑战,即通过引入新的解决方案和对现有技术进行升级,进一步改善治疗效果并克服THV当前的局限性,包括瓣周漏、血管并发症和长期耐用性。此外,随着适应症的扩大,需求不断增加,在许多国家,由于成本原因,获得TAVI治疗仍然是一个限制因素。目前,由于缺乏钙化和锚定机制,新的经导管心脏瓣膜(THV)技术在临床前环境中的长期评估仅限于急性植入可行性研究。在天然瓣环或降主动脉中植入THV并造成主动脉瓣关闭不全的唯一可用模型,其手术和随访死亡率都很高。尽管在Carney等人的最新模型中实现了锚定,7但该模型需要体外循环和较长的构建时间,死亡率仍然很高。最近,作者引入了一种新型的主动脉弓上缩窄和经导管心脏瓣膜植入羊模型,该模型可实现瓣膜锚定以及长期的机械和生物学评估,与之前的模型相比,其死亡率显著降低。在新型主动脉弓上缩窄羊模型中评估了新型混合蜂窝状细胞设计的THV Myval(Meril生命科学公司)的6个月机械和血流动力学性能以及耐久性和生物学反应。
Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106(24):3006-3008.
Leon MB, Smith CR, Mack M, et al. PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597-1607.
Leon MB, Smith CR, Mack MJ, et al. Trans-catheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609-1620.
U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data, Replacement Heart Valve, Edwards Sapien Transcatheter Heart Valve. U.S. Food and Drug Administration; 2012. Application P110021. Accessed March 3, 2022. https://www.accessdata.fda.gov/cdrh_docs/ pdf11/P110021b.pdf
Eltchaninoff H, Nusimovici-Avadis D, Babaliaros V, Spenser B, Felsen B, Cribier A. Five month study of percutaneous heart valves in the systemic circulation of sheep using a novel model of aortic insufficiency. EuroIntervention. 2006;1(4):438-444.
Andersen HR, Knudsen LL, Hasenkam JM. Trans-luminal implantation of artificial heart valves: description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur Heart J. 1992;13(5):704-708.
Carney JP, Schappa Faustich J, Lahti MT, et al. New model for the assessment of transcatheter aortic valve replacement devices in sheep. J Invest Surg. 2022;35(2):371-377.
Buszman PP, Fernandez C, Kachel M, et al. Long-term biocompatibility and mechanical performance of a new balloon expandable trans-catheter biological aortic valve system assessed based on novel ovine aortic banding model. J Am Coll Cardiol. 2020;75(11 suppl 1):1349.
Buszman PP, Kachel M, Domaradzki W, et al. Long-term evaluation of biocompatibility and endurance of a novel, balloon expandable trans-catheter polymeric aortic valve in the ovine aortic banding model. J Am Coll Cardiol. 2020;75(11 suppl 1):1350.
Institute of Laboratory Animal Resources, National Research Council. Principles of Care of Laboratory Animals. National Institutes of Health; 1996. Publication 85-23.
Scherman J, Ofoegbu C, Myburgh A, et al. Preclinical evaluation of a transcatheter aortic valve replacement system for patients with rheumatic heart disease. EuroIntervention. 2019;15(11):e975-e982.
Tarantini G, Purita PAM, D’Onofrio A, et al. Long-term outcomes and prosthesis performance after transcatheter aortic valve replacement: results of self-expandable and balloon-expandable transcatheter heart valves. Ann Cardiothorac Surg. 2017;6(5):473-483.图片详情关注睿晏科技公众号查看